快速傅氏變換(FFT)是離散傅氏變換的快速算法
2017-01-16 by:CAE仿真在線 來源:互聯(lián)網(wǎng)
快速傅氏變換(FFT)是離散傅氏變換的快速算法,它是根據(jù)離散傅氏變換的奇、偶、虛、實等特性,對離散傅立葉變換的算法進行改進獲得的。它對傅氏變換的理論并沒有新的發(fā)現(xiàn),但是對于在計算機系統(tǒng)或者說數(shù)字系統(tǒng)中應用離散傅立葉變換,可以說是進了一大步。
設x(n)為N項的復數(shù)序列,由DFT變換,任一X(m)的計算都需要N次復數(shù)乘法和N-1次復數(shù)加法,而一次復數(shù)乘法等于四次實數(shù)乘法和兩次實數(shù)加法,一次復數(shù)加法等于兩次實數(shù)加法,即使把一次復數(shù)乘法和一次復數(shù)加法定義成一次“運算”(四次實數(shù)乘法和四次實數(shù)加法),那么求出N項復數(shù)序列的X(m),即N點DFT變換大約就需要N2次運算。當N=1024點甚至更多的時候,需要N2=1048576次運算,在FFT中,利用WN的周期性和對稱性,把一個N項序列(設N=2k,k為正整數(shù)),分為兩個N/2項的子序列,每個N/2點DFT變換需要(N/2)2次運算,再用N次運算把兩個N/2點的DFT變換組合成一個N點的DFT變換。這樣變換以后,總的運算次數(shù)就變成N+2(N/2)2=N+N2/2。繼續(xù)上面的例子,N=1024時,總的運算次數(shù)就變成了525312次,節(jié)省了大約50%的運算量。而如果我們將這種“一分為二”的思想不斷進行下去,直到分成兩兩一組的DFT運算單元,那么N點的DFT變換就只需要Nlog2N次的運算,N在1024點時,運算量僅有10240次,是先前的直接算法的1%,點數(shù)越多,運算量的節(jié)約就越大,這就是FFT的優(yōu)越性
設x(n)為N項的復數(shù)序列,由DFT變換,任一X(m)的計算都需要N次復數(shù)乘法和N-1次復數(shù)加法,而一次復數(shù)乘法等于四次實數(shù)乘法和兩次實數(shù)加法,一次復數(shù)加法等于兩次實數(shù)加法,即使把一次復數(shù)乘法和一次復數(shù)加法定義成一次“運算”(四次實數(shù)乘法和四次實數(shù)加法),那么求出N項復數(shù)序列的X(m),即N點DFT變換大約就需要N2次運算。當N=1024點甚至更多的時候,需要N2=1048576次運算,在FFT中,利用WN的周期性和對稱性,把一個N項序列(設N=2k,k為正整數(shù)),分為兩個N/2項的子序列,每個N/2點DFT變換需要(N/2)2次運算,再用N次運算把兩個N/2點的DFT變換組合成一個N點的DFT變換。這樣變換以后,總的運算次數(shù)就變成N+2(N/2)2=N+N2/2。繼續(xù)上面的例子,N=1024時,總的運算次數(shù)就變成了525312次,節(jié)省了大約50%的運算量。而如果我們將這種“一分為二”的思想不斷進行下去,直到分成兩兩一組的DFT運算單元,那么N點的DFT變換就只需要Nlog2N次的運算,N在1024點時,運算量僅有10240次,是先前的直接算法的1%,點數(shù)越多,運算量的節(jié)約就越大,這就是FFT的優(yōu)越性
開放分享:優(yōu)質有限元技術文章,助你自學成才
相關標簽搜索:快速傅氏變換(FFT)是離散傅氏變換的快速算法 Fluent培訓 Fluent流體培訓 Fluent軟件培訓 fluent技術教程 fluent在線視頻教程 fluent資料下載 fluent分析理論 fluent化學反應 fluent軟件下載 UDF編程代做 Fluent、CFX流體分析 HFSS電磁分析
編輯